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thickness h and the parameter a. 
Direct substitution shows #at the boundary value problem for the ordinary differential 

equations is selfconjugate.Thisisensured by the existence of a potential for the stresses and 
the potential character of the external loads. In the case in question the latter condition 
holds irrespective of the follower character of the load. It can be shown that a uniform 

tangential load of the type (1.1) distributed over a closed contour is conservative, and this 
justifies the use of the static Euler method. 

The figure shows the results of computations for the neo- 
%? Hookean material. The curves corresponding to various values 

of a characterize the dependence of %. on h. We see that on 
7 reducing the ring thickness the value of the critical load 

increases for fixed a . Thus the ring becomes more stable when 

6 h decreases. When the load is increased in steps, a form of 
equilibrium characterized by large values of a occurs within 
the range of small thicknesses. For thick rings the converse 

I2 J 4 h is true. We note that the stability curves have a minimum. On 
passing the minimum point the loads increase slightly and have 
a horizontal asymptote as hdm. 

The author thanks L.M. Zubov for valuable comments. 
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EFFECT OF A SMALL DEVIATION IN THE FORM.OF THE SHELLS OF 
REVOLUTION FROM AXIAL SYMMETRY ON THEIR STATE OF STRESS* 

A.IU. POPOV and G.N. CHERNYSHEV 

The effect of small, non-axially symmetric imperfections of the middle 
surface in shells of revolution on their stresses and displacements is 
studied. A strong dependence on them is found both in statics as well as 
thermoelasticity. The general theoretical results are confirmed by a 
numerical study of the displacement and stress fieldsincylindrical and 
conical shells with small imperfections of the type f(g)eosmcp. 

1. We know that shells with free boundaries (we shall call them free shells) are in, 
general, compliant, and only weakly resist the action of external loads. However, if the 
external loads satisfy prescribed integral conditions formulated in the theorem onflexure 
/l, 21, the shells become stiff. The stiffness is, however, unstable and vanishes when there 
are minute deviations from the conditions, whereupon the shell bends and large displacements 
result. Using the static-geometrical analogy , we find that the problem of analyzing a free 
shell under external load is equivalent to the problem of computing a shell clamped along its 
boundary (we shall call it the clamped shell) in a temperature field /3/. From this, we find 
that, according to the above analogy, the appearance of instability of the stress state in 
free shells when there are small changes in external load , implies a certain instability in 
the stress state in clamped shells for small variations in the temperature load. 

We will derive asymptotic estimates which will be needed later, for the stress state in 
free and clamped shells under the action of slowly varying loads of single intensity /4/. In 
a free shell, when the conditions of the theorem on flexures do not hold, the tangential stress 
0, and the flexural stress 0% are of the order of 

2Eh (u,, us, wj-= h,-* a’0 (Rf; 0% = !a,-‘0 (R); o, = he-*0 (R) 

Here ul, I+. w are the displacement vector components, h is the half-thickness of the shell, R 
is the external load vector, a is the characteristic linear dimension, E is Young's modulus 
and h,= h/a is a small parameter. In a clamped shell we have 

*Prikl.Matem.Mekhan ..38,1,154-160,1984 
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2’3s (u,, =I, w) = a*U (It), u1 = h,-IO (It), u2 = o (R) 

h,-’ 
The above estimates show that the stresses in a free shell are flexural, since they are 
-times as large as the tangential stresses. 

in the free shell is h,-* 
For a given load intensity the displacement 

times as large as that in the clamped shell. 
on the free shell satisfy the conditions of the theorem on flexures, 

If the loads acting 
then the estimates for 

the displacements and stresses in it are close to those for the clamped shell. The substan- 
tial dependence of the stress state in a free shell on the external loads implied by the est-- 
mates, can be illustrated as follows. A change in the load intensity by a small amount of the 
order of h,, causes a change in the displacement by a quantity of the order of h,-1, in flex- 
Ural stresses by a quality of the order of h,-1 times, and in tangential stresses by the 
quantity hea. In a clamped shell the same change in the load will cause a change in the dis- 
placements by h,, in tangential stresses by h;, and in flexural stresses by h, I i.e. the 
stress state will change by an insignificant amount. 

Analogous asymptotic estimates for a free and clamped shells subjected to temperature 
loads of the same intensity will be, in the case of a free shell, 

(111. “a, w) = ~0 (Q), ul= Eh,*O (Q), q = Eh.0 (Q) 

where Q is the external temperature load vector in the equations of continuity of deformations. 
In the clamped shell we have 

(~1, ~2, w) = 00 (Q), u1 = Eh,q (Q), US = Eh.0 (Q} 

The methods of estimating the thermoelastic stress state are the same as those used for force 
loads. The estimates themselves follow from the analogy between the thermoelastic and static 
problem. At first sight the estimates in the thermoelastic problems appear to be less convinc- 
ing, with the power indices of the shell parameter found to be positive. We must remember, 
however, that it is not the absolute, but the relative values of the quantities that are import- 
ant. We see from the estimates that for a given temperature load intensity the stress state 
in the clamped shell is h,-1 times as large as that in the free shell. As before we shall 
have the substantial dependence of the thermoelastic stress state in the clamped shell on the 
variations in the temperature field. In the free shell this dependence is weak. The estimates 
obtained for the static case of free shells become invalid, as was said above, when the loads 

satisfy the conditions of the theorem on flexures. 
Let us formulate this theorem for a shell with free edges /4/: under the specified supple- 

mentary conditions, the stress state in a free shell will be membrane state of stress if and 
only if the corresponding external load does no work on the displacements of all possible 
flexures of the middle surface. For the thermoelastic problems in clamped shells we have a 
theorem, called in /5/ the theorem on possible static states. The theorem is so called by 
analogy with the concepts of flexures in free shells and static states in the clamped shells. 
Let us formulate this theorem: if the temperature loads vector Q in a clamped shell is ortho- 
gonal to the static states vector (compatible with the tangential boundary conditions if such 
conditions exist), then a flexural stress state occurs in a shell acted upon by the given 
temperature field. By the temperature load vector Q we mean the vector whose components are 
represented by the right-hand sides of the equations of continuity of deformations. The 
temperature load vector in the thermoelastic problem corresponds to the load vector in the 
static problem. By the static stress vector we mean the vector v=(a,,a,,c), whose components 
are functions of the stresses a,,=,,~, corresponding, 
to the displacements 

according to the static-geometrical analogy, 

$7 US, UI. 
Thus we see that the free shell only weakly resists the force loads, but resists the 

temperature loads quite well. The clamped shell on the other hand, resists the action of 
force quite well but weakly resists that of the temperature. Mathematical by, static stresses 
in the shell are caused by the lack of homogeneity in the equations of equilibrium, and temp- 
erature stresses result from the lack of homogeneity in the equations of continuity. This 

means that the shell reacts, in principle, differently to the right-hand sides of the equations 
of equilibrium and of continuity of deformations. We can make the following assertions. The 
stress state in the clamped (free) shells depends correctly (incorrectly) on the right-hand 
sides of the equations of equilibrium, and incorrectly (correctly) on the right-hand sides of 
the equations of continuity of deformations. The correctness or incorrectness in the given 
case means that small variations in the right-hand sides result in substantial or insubstan- 
tial changes in the stress state. 

2. Let us now consider the question of how the stress state of a shell of revolution will 
change if its form departs somewhat from the perfect one. We will assume, although this is 

not essential, that the shell boundary is perfect. We will describe the imperfections in the 
shell using functions of the type ~f(z)~~~,rntp where z is the meridianal and v the peripheral 
coordinate, f(z) is a slowly varying function and E is a small quantity. We will write the 
coefficients and required solution of the system of equations in the form of sums in powers 

of the small parameter e . After substituting the coefficients and solution into the initial 

system, the latter separates into several subsystems of equations. Construction of the zero 
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approximation represents the solution of the problem for a perfect shell of revolution. Every 
subsequent approximation is constructed‘by integrating the system of equations for the perfect 
shell with different right-hand sides in the equations of equilibrium, as well as in the 
equations of continuity of deformations. The procedure for constructing the solution described 
here is realized when computing cylindrical and conical shells with free, as well as with 
rigidly clamped boundaries. Deviation from axial symmetry is described in terms of the vari- 
able distance r between the axis of revolution and the middle surface of the shell, which for 
a cylindrical shell has the form 

7 (2, rp) = Ro Ii + cf (1) cm Tl (2.1) 

whereR, is the radius of the perfect cylinder and m is the number of waves in the peripheral 
direction. In this case the geometrical characteristics, i.e.. their zero and first orderterms 
of expansion into the asymptotic sums, have the form 

A, = 4, An = t, x = x12, L,, = R&F co% mf$’ (2.2) 
&, = -R, [i + ef (ma + 1) eos mcpl; L,, = --mRJ‘e sin me 

Here A,,A, and L,,, 4,. L,, are the coefficients of the first and second quadratic forms of the 
surface, and x is the angle between the coordinate lines. 

Expressions (2.1) and (2.2) were substituted into the equations of equilibrium and con- 
tinuity of deformations written in any orthogonal coordinate system /4/'. All unknown quantit- 
ies in these equations were written in the form of sums in powers of e. Separation of the 
variables is possible, provided that the first approximation is axisymmetric. As a result, 
the system of equations of equilibrium takes the following form to a first approximation: 

+ r = Ror*TtO - + (m* - 1) To - 

The system of equations of continuity of deformations, to a first approximation, takes the 
form 

Here $.P is the linear expansion coefficient and the temperature to which the shell material 
is heated, X, is the meridianal load and 8X3 at, o, x1,x,,%, T,, TI. 8, G,G*,H are the deformations 
and their force factors in the notation used in /4/. The superscript indicates the zeroth or 
first approximation. The elasticity relations remain homogeneous and are therefore not given 
here. The system was integrated numerically on a computer using a method due to S.K. Godunov 
/6/. 

The static and thermoelastic problems were studied for cylindrical and conical shells with 
small imperfections. The following dimensionless parameters were chosen for the cylindrical 
shell: the half-thickness h*= h/R,= 0.0025, the relative strength L/R,= 4.O(L is the Length 
of the axis of rotation of the shell). Fox a conical shell the above parameters had the 
following values: 11, = h/R, = 0.00667, L/R, = 4.81 (% is the radius of the smaller base of the cone), 
and the cone half-angle was a= 30n. In each case it was assumed that e = h,i2. The computa- 
tions were carried out separately for the values of m ranging from 2 to 10, in order to study 
the influence of various types of defects on the stress state. Fig.1 shows the results of 
the computations for the cylindrical and conical shell. One edge of the shell was clamped, 
and the other was coupled to a perfectly rigid ring through which the axial force was trans- 
mitted. 
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Fig.1 Fig.2 

Fig.la shows the variation in the maximum valueoftotalflexture w with m. All graphs show 
dimensionless quantities, and the values of the cofficients converting the parameter to dimen- 
sionless form are f,=P/(4nEh), 12= P/($nR,h) where P is the axial compressive force. For a 
cylindrical shell P= 98.1 N and for the conical shellp= 13.iN;1 denotes the curve for the 
cylindrical shell and 2 for the conical shell (shown with opposite sign). The dashed straight 
lines show the value of the axisymmetric flexure (zero approximation). 

Fig.lb shows the dependence on m of the maximum value of the total stress due to the 
tangential forces o1 (the dashed lines correspond to c1 in the zeroth approximation): 1 for 
the cylindrical and 2 for the conical shell. The same graph shows the dependence on m of 
the maximum value of the total stress due to the moments (Jo , 3 for the cylindrical shell and 
4 for the conical shell (shown with opposite sign). 

Fig.2 shows the results of computations for the cylindrical shell. In the first case the 
cylindrical shell, rigidly clamped at one edge and coupled to a perfectly rigid ring, was 
uniformly heated, and in the second case a cylindrical shell with free edges was subjected to 
a uniform external pressure. Fig.2a shows the variation of w with m. The values of the co- 
efficients converting the parameters to dimensionless form are: 13 = BT"R, = 140pR,,E. f( = EpT" = 

14op where p is the external pressure (p = 15.i06N/m 2, To= lOO"C11 denotes the curve foraheated 
cylindrical shell, and 2 is for a cylindrical shell under external pressure. The dashed lines 
show the value of the axisymmetric flexure. 

Fig.2b shows the variation in 01 and Q with m. The dashed lines correspond to the value 
of the parameter in the zeroth approximation; 1, 2 denote curves of 41 and u2 for a cylindrical 
heated shell, and 3, 4 curves of LJL and o, for a cylindrical shell under external load. The 
computations show that in all problems the changes in the defects with respect to m substan- 
tially affect the displacements of the shell. The flexure, taking the first approximation in 
F into account, exceeds, for the defects at m= z , the axisymmetric flexure by a factor of 
1.2 for the loaded cylindrical shell, and by a factor of 1.1 for the heated cylindrical shell. 
The greatest deviation of the flexure from the axisymmetric value was observed for loaded 
shells, at m=5 and m= 6 for the cylindrical and conical shells. For the cylindrical shell 
the deviation in flexure was found to be 8.5 times that of the axisymmetric flexure, and for 
the conical shell the value was 2.7 times. For a heated cylindrical shell the maximum value 
of the flexure was at m= 6 equal to 6.6 times that of the axisymmetric flexure. For a free 
cylindrical shell under external pressure the maximum value at m= 2 was 22 times that of the 
axisymmetric flexure, and the value of w gradually decreased as m increased. 

In all cases the change in the defects influences the stress state. The stresses (Jo due 
to tangential forces change insignificantly (not more than 10% from the axisymmetric value), 
while the stresses (I, due to the moments increase considerably_. For a cylindrical shell under 
an axial load the increase is 23% of the axisymmetric stress, for a conical shell it is 43%, 
for a free cylindrical shell under external pressure theincreaseis79% and for a heated cylin- 
dircal shell g2 exceeds o1 by a factor of 3.7. 

The results confirm the earlier conclusions concerning the incorrectness of the stress 
state to non-axisymmetric imperfections: the deflection of the form of the middle surfacs 'by 
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half the thickness leads to a severalfold change in the displacements. The result is important 
when studying the strength of shells and in experimental investigations. When measuring the 

displacements, we must always remember how sensitive they are to the shell imperfections dis- 
cussed here. Moreover, the imperfections may lead to the appearance in the clamped shell of 
a flexural stress state comparable with the membrane stress state, i.e. they may change com- 
pletely in character. The membrane component of the stress state will, in this case, be 
mainly axisymmetric, and the flexural component will change in accordance with the law govern- 
ing the change in the imperfections. This may lead, in particular, to the loss of the load 
carrying capacity of the shell, or to its undesirable deformations. Thus the defects lead to 
a substantial changein the character of the stress state; in statics and thermoelasticity it 
changes from the membrane to the mixed stress state. 

It should-be noted that not all shell imperfections may change the stress state substant- 
ially. We can use the theorems on flexure and static states to classify the imperfections and 
single out the dangerous ones. 

We know that in a free shell of revolution the flexures are described in terms of the 
functions ~,COS~IJ, ma2 , i.e. there are no flexures axisymmetric and varying as coscp . This 
means thattheaxisymmetric loads andloadsvaryingas coscp bothsatisfytheconditionsofthetheorem 
on flexures, since the work done by these forces on the possible flexures is always equal to 
zero. Then according to what was said above, when the loads are small, the stresses will 
always be fairly small. According to the static-geometrical analogy we find exactly the same 
situation in the case of clamped shells, where again there are no static states axisymmetric 
and varying as cos(p. Therefore the thermoelastic stress will always be fairly smallforsmall 
temperature difference, axisymmetric and varying as cos 'p. The picture becomes different if 
the loads and temperatures in the problems shown vary as cos mcp, m > 2. The stresses then 
increase appreciably even though the intensity of the loads and temperatures is maintained the 
same. We can generalize this by saying that the imperfections, axisymmetric and varying as 
COST , cause insignificant changes in the stress state in clamped as well as free shells of 
revolution. We can explain this in a different way. 

If, in constructing the first approximation we seek the solution using the suggested small- 
parameter method, the right-hand sides will contain functions axisymmetric or varying as COST. 
The first approximation problem will in this case be equivalent to that of computing a shell 
of revolution with laods that are axisymmetric or vary as coscp , and small'temperature loads 
caused by small imperfections. Since there are neither flexural nor static states present 
both theorems hold and the dependence on the right-hand sides will be correct: small right- 
hand sides will give small solutions, i.e. the defects do not cause appreciable changes in 
the displacements and stresses. 

The situation becomes different when the defects vary as cos mcp, m >2. However, in this 
case we also find that if the right-hand sides of the first approximation formed by the func- 
tions of the imperfections are such that the integral conditions of the theorems hold, i.e. 
the corresponding vector formed by the right-hand sides of the equations of equilibrium is 
orthogonal to the flexural displacement vector for a free shell, and the vector of the right- 
hand sides of the continuity of deformations equations is orthogonal to the vector of static 
states for a clamped shell. Such imperfections are therefore not dangerous, and cause insign- 
ificant perturbations in the stress state. The orthogonality requirements may serve as a 
criterion for estimating the degree of danger introduced by the imperfections. 
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